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Abstract

In this Master’s thesis a run-time reconfiguration mechanism for multi-
DSP systems with point-to-point communication has been developed to im-
prove testability and maintainability. This mechanism is an extension of the
rapid prototyping system PEPSY which allows the development of data-flow
driven real-time applications. First, existing rapid prototyping systems, data-
flow models and multi-DSP operating systems are investigated and compared.
Principles of fault tolerance, test and reconfiguration are outlined. Second,
an overview of PEPSY is given and the basic functions of the run-time recon-
figuration mechanism are discussed. Subsequently, implementational details
of the mechanism and the data transfer protocol between the host and the
multi-DSP system are shown. Finally, in an experimental evaluation the
quality and temporal behavior of the implementation are investigated.

Zusammenfassung

In dieser Arbeit wurde ein Rekonfigurations-Mechanismus fiir Multi-DSP
Systeme mit Punkt-zu-Punkt Verbindungen entwickelt, um Testbarkeit und
Wartbarkeit darin zu verbessern. Dieser Mechanismus stellt eine Erweiterung
des Rapid Prototyping Systems PEPSY dar, das die Entwicklung von Daten-
fluk-orientierten Echtzeit-Anwendungen erméglicht. Zuerst werden existier-
ende Rapid Prototyping Systeme, Datenfluk-Modelle und Multi-DSP Be-
triebssysteme erortert und verglichen. Anschlieffend werden Grundlagen in
den Bereichen Fehlertoleranz, Test und Rekonfiguration erlautert. Im zweiten
Schritt wird PEPSY vorgestellt und grundlegende Anforderungen an den
Laufzeit-Rekonfigurationsmechanismus werden erdrtert. Darauf folgend wer-
den Details der Implementierung und des Datentransfer-Protokolls zwischen
Host und Multi-DSP System gezeigt. Abschliefsend wird die Qualitat und das
zeitliche Vehalten des Lademechanismus experimentell untersucht.
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Chapter 1

Introduction

As society increasingly relies on technology in everyday life, it becomes more
and more important to provide reliable systems with high availability, ease
of maintenance and the possibility for reconfiguration and (re-) distribu-
tion of the application software. This thesis will therefore provide means,
based on a multi Digital Signal Processor (DSP) system, to provide all of the
above with additional features like in-system test of tasks, incorporation of
fault-tolerance principles and administrative tools to control the (embedded)
multi-DSP system at run-time by means of a connected host computer. The
main advantage of having the ability to reconfigure tasks at run-time is the
fact that high-available systems can remain up and running while an update
of parts of their software is conducted.

The aim of this thesis will therefore be to implement such a mechanism.
Special consideration is given to low-overhead and system stability. This im-
plementation will show the principles of work of such a system and will be
compatible to already working software. A rapid prototyping system called
PEPSY exists at the Institute for Technical Informatics at Graz University
of Technology, which consists of a host PC and multi-DSP boards. This
system! has been used for various tasks like simulation of the human pe-
ripheral auditory system developed by rapid software prototyping using Java
classes [Rup01| or simulated annealing [Sch98]. It will be reused for evalu-
ating and implementing methods and protocols to allow for reconfiguration
of tasks at run-time under special consideration of low overhead and fault
tolerance. This is to accomplish a broad spectrum of executable tasks and
algorithms on systems with small footprints.

see chap. 4.1 (p. 30).
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Applications based on PEPSY are data-flow driven. The DSPs in the
multi-DSP system work as nodes receiving and sending data to other DSPs in
the system in a peer-to-peer network. That means, that connections between
DSPs only influence the two DSPs connected via that specific physical link.

In the ever evolving area of fast computing and parallel processing a se-
cure and overhead-minimizing way to incorporate task reconfiguration into
embedded DSP systems provides smaller turn around times and a quicker
time to a working product. This holds because there is no more need to re-
boot a system once a new version of software has been written. A small kernel
on the DSP will be needed therefore to accomplish the task of downloading
the code from the host and supervising the execution of it.

This kernel not only has to start the relevant code by jumping to its entry
point but also has to take care of real-time constraints and must for instance
therefore be able to kill tasks exceeding their initial execution time. It would
also be of use to implement some sort of memory protection into the DSP
kernel, but this will be left out for further work to be done.

In the course of this thesis methods will be developed to describe the
processes and theoretical aspects of the implementation. The existing imple-
mentation of rapid software prototyping by tools for automatic code genera-
tion shall be expanded to incorporate the necessary changes for an automatic
generation of the mini kernel itself. The kernel will then be tailored for the
target system and the problem to be solved.

The main aims therefore are for the system to enable task reconfigura-
tion, and with it provide means to enhance the system with for example
fault tolerance principles and the ability to recover errors, the possibility to
implement N-version programming on a single computing device, updating
of DSP firmware, software testing and alike.

The remainder of this thesis is organized as follows: In the next chapter
an overview over rapid prototyping systems and existing DSP operating sys-
tems (OSs) will be given, and there will be a description of data flow models
for DSP applications. Second, an overview of PEPSY is given and the basic
functions of the run-time reconfiguration mechanism are discussed. Subse-
quently, implementational details of the mechanism and the data transfer
protocol between the host and the multi-DSP system are shown. Finally, in
an experimental evaluation the quality and temporal behavior of the imple-
mentation are investigated.



Chapter 2

Theoretical Background

2.1 Overview

The aim of this thesis is to implement a tool set to enable developers of
single- and multi-DSP systems to reuse RAM and DSP resources while the
system is running. Although re-using resources is not to be confused with
reconfiguration of hardware,! many concepts from that field can be applied
to develop a DSP system which provides for high flexibility, little overhead
and a small footprint.

The challenge is to incorporate the design goals into an already existing
system, in this case to introduce the capability to load code and data into
a multi-DSP system. Two main concepts have to be considered and even-
tually implemented in this thesis. Rapid prototyping as a concept is given
due to previous work and the existing tools and concepts will be incorpo-
rated herein. Software fault tolerance principles have to provide for secure
operation in different environments and is therefore a basic requirement for
reliable systems as hardware failures can never be excluded. In the next two
sections, these two concepts will be discussed more closely, together with an
evaluation of existing DSP real-time OSs.

I The concept of reconfiguring hardware is nothing new. In fact, one of the first comput-
ers, Colossus by Alan Turing, could only be programmed by reconfiguring its hardware.
See http://slashdot.org/books/01/01/20/1337235.shtml.
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2.2 Rapid Software Prototyping on Multi-DSP
Systems

2.2.1 Principles and Development Environments

Rapid software prototyping and development describes a process that helps
developers to implement their intended applications in a faster and smoother
way. It is supposed to minimize turn-around times and time-to-market. As
product lifetime increasingly becomes shorter and shorter it is important to
simplify the development process. Therefore abstractions layers are intro-
duced to modularize development phases. This can be accomplished either
by using OSs with powerful APIs or with automatic code generation tools,
both introducing layers of abstraction between the target system and the
developer. Powerful APIs are useful for functional implementations to proof
intended concepts. As they are capsuled and provide defined interfaces, it can
happen that similar code is introduced twice or more often into the project
resulting in increased memory requirements. Also synergy effects by using
pre-loaded registers mostly cannot be utilized as the interface of the API
functions prevents use of internal register usage. Because of the attributes
depicted above, automatic code generation tools are used in this thesis.

Rapid software prototyping, or rapid prototyping in general, introduces
layers of abstraction between the problem at hand and the target platform.
Development with rapid software prototyping tools can be divided into sev-
eral phases as shown in fig. 2.1 (p. 5). First the application to be implemented
has to be modelled to fit into the description of the system. Also the hard-
ware abstraction has to be in a format compatible to a mapping tool, which
will then generate the mappings and an optimized schedule. Code synthesis
tools generate executable code, which can be downloaded onto the DSPs and
tested. If there are bugs they have to be removed in the abstract model and
the complete process applied again.

One such system, Grape-II, a graphical rapid prototyping environment,
provides the developer with a GUI to apparently ease the development pro-
cess due to abstraction. Its main advantage over specialized systems is the
employment of “general-purpose reusable hardware to minimize development
cost and a structured prototyping methodology to reduce programming ef-
fort” [LEAP95|. In that it releases the developer from tedious implementa-
tional issues and they can concentrate on problem specific topics. Grape-II
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Figure 2.1: Development phases of rapid prototyping systems

is able to modify parameters stored in the DSP RAM at run-time, but there
is no provision for incorporating new tasks into the system once it is started.

Another system, SynDEx, also abstracts the hardware from the developer
to increase development speed and reduce turn-around times. “The imple-
mentation consists of distributing and scheduling the data-flow graph on
the multicomponent hyper graph while satisfying real-time constraints. The
distribution and schedule are calculated first and are static. SynDEx repre-
sents the distributed processing tasks into the specified processors and then,
generates an intermediate macro-code, which is a direct translation of the ob-
tained distribution and scheduling. Finally, a macro processor M4 generates
the appropriated executive for the target architecture" [FAdar|. The ability
to autonomously map tasks and data onto parallel and mixed architectures is
implemented as well as in the other systems described above [FAdar, FdAar|.

Also the development environment developed and provided by Texas In-
struments, Code Composer, can be seen as a rapid prototyping system as its
integrated multi-DSP capabilities extremely simplify development for such
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systems. It is able to intensively monitor the DSPs at run-time via a JTAG
connection to the DSPs. With this it is possible to inspect and change mem-
ory locations and CPU registers at run-time. Integrated debugging facilities
and trace modes provide further simplification and acceleration of the devel-
opment process.

The Code Composer provides high integration and abstraction of hard-
ware and presents the user with an useable frontend to its integrated devel-
opment envirnoment,.

A fourth system, PEPSY, developed at the Institute for Technical Infor-
matics, Graz University of Technology, provides another set of tools to mainly
release the developer from distributing the tasks and data by themselves as
it utilizes the resources in an optimal way, gained by simulated annealing.
Given an extended data flow graph of the DSP application and a descrip-
tion of the target multi-processor system, PEPSY automatically maps and
schedules the DSP application onto the multi-processor system and gener-
ates complete code for each processor. An expansion exists to automatically
execute partitioning of the given problem with the help of costs assigned to
implementations on different target hardware as well as in software [MiicO1].

2.2.2 Data-flow Models

Nowadays two computing principles are generally at work: von Neumann ar-
chitecture and the data-flow concept. As von Neumann computers are mainly
for serialized execution of commands, data-flow provides for parallelizing and
will therefore be preferred.?

Data flow is usually represented in graphs. Here edges depict the flow
of data between tasks denoted by the nodes of the graph. Several data-flow
models can be distinguished, based on the amount of data (relative to other
inputs and outputs) to process in each step and its synchronization methods.
Depending on how the consumption and production together with the firing

rules are specified, graphs or subgraphs can be divided into different classes:?

e single-rate (or homogeneous) data-flow (SRDF)

e multi-rate (or synchronous, regular) data-flow (SDF, MRDF)

2For a historical overview on data-flow and von Neumann computing, see [SRU97].
3A description of the most important data-flow models as well as the development
environments can be found in app. B (p. 65) and [LEAP95, BELP96, FAdar|
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e cyclo-static data-flow (CSDF)
e dynamic data-flow (DDF)

Systems using SRDF produce exactly one output unit for each data unit
at their inputs. The data rates at inputs and outputs are therefore always
the same and constant. MRDF systems have a fixed relation between the
amount of data they read from each input to output one data unit. This
relation is fixed, but the data rates differ from gate to gate. CSDF is (as
used in the Grape-II [LEAP95] environment) an extension to MRDF in that
in can change the rate of input and output data according to the data itself.
Nevertheless, the changes are cyclic and predictable. For SRDF, MRDF and
CSDF it is possible to apply static (offline) scheduling for constructing a
valid schedule. DDF requires online scheduling and is therefore the most
universal but also the most complex data flow concept. Many more data-
flow models are discussed in [Bha99| as extensions to SDF to fill the gap
between SDF and DDF while maintaining its compile-time predictability.
data-flow, MD-SDF'; well-behaved stream flow-graphs, WBSFG; BDF; cyclo-
dynamic data-flow, CDDF; heterochronous data-combines the SDF paradigm
with finite state machine data-flow, BDDF. As will be seen in chap. 3.2
(p- 21) and chap. 4.5 (p. 47), the existing data-flow model uses buffered
data transfers and therefore constitutes a (multi-rate) synchronous data-flow
model. There is no provision for cyclo-static data-flow, but as the expansion
for reloadability is in no way restricted to the contents of the task itself, other
models and behavior patterns can be implemented.

However, the scheduling for cyclo-static tasks is more demanding than for
the single-rate or even multi-rate data-flow model. “For a proper run-time
execution, the schedule must guarantee that all necessary data is available
when a task is executed and that the amount of data in the buffers remains
nonnegative and bounded” [BELP96]. It can be shown that as the schedule
will be executed repetitively, every vertex has to step through a complete
execution sequence for each loop and that the amount of tokens produced
by an edge during one iteration of the schedule must equal the amount of
tokens consumed from it [BELP96]. This sounds trivial but is important to
remember while implementing to avoid buffer over- or underflows. Deadlocks
would follow and the system would be halted. One approach to avoid dead-
locks is to implement circuitry to detect deadlocks and try to re-synchronize
all affected vertices. This approach shall be used in this thesis.
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To convert a data-flow representation of a model into a running system,
the development environment has to assign the vertices to processing de-
vices, define routes for data paths through the network and determine the
execution order of the tasks. This can be done dynamically, at run-time,
but imposes severe overhead onto the system. Static (offline) scheduling will
be preferred, although dynamic data-flow models cannot be used anymore.
Therefore, several extensions to the SDF have been proposed to circumvent
this restriction of the SDF. But to enable static scheduling at all, only tasks
with invariant behavior can be supported in the classical SDF model. CSDF
is a more powerful data-flow model that can incorporate cyclically changing
behavior. To support reloadable tasks one would have to use DDF, but with
certain restrictions SDF or CSDF can also be used and static scheduling is
still possible. The restrictions imposed will be further discussed in chap. 4.6.2
(p. 50).

It would of course be possible to implement an online scheduler to support
DDF, but the high overhead is unacceptable in resource restricted systems.
However, most problems behave predictably in one way or the other and so
make it possible to apply extended SDF models, which results in the pos-
sibility for static scheduling. Therefore a new data-flow model is proposed:
Quasi-Dynamic Data-Flow, QDDF, shall incorporate quasi-dynamic be-
havior while still being statically scheduled offline. “Quasi-dynamic” shall
denote the dynamic behavior in that it is not predictable in what state the
system is at a given moment, as any well-behaving* task or none at all could
have been downloaded into the system before. It is therefore not possible
to give a schedule beforehand which would be valid at every point in time.
The only feasible schedule incorporates all fixed tasks in the system plus
additional time left for the kernel and a possible task under test to fit in.

2.3 Existing DSP Operating Systems

The concepts described above are already implemented in several real-time
operating-systems, with the exception of task reconfiguration. The question
arises, why should one not investigate in available real-time DSP OSs and
use an open-source version, which can be tailored to one’s need?

“The task at hand has to be compiled before downloading and the developer will have
taken care not to exceed the limits set by the system.
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As a quick answer, they all have too many features and too much over-
head for being used as a small kernel, which in this application mainly has
to provide means for task reconfiguration. Furthermore open-source versions
of DSP OSs are very rare and hard to find. Commercially available real-time
O8s, like Virtuoso®, 0S-95, QNX RTOS’, Neutrino®, Elate’, DSP-Bios!® and
others!!, are either targeted at the desktop market (Elate or Neutrino, for ex-
ample, can be run on a desktop PC featuring support for various processors),
rarely, or at embedded systems with an arbitrary selection of restrictions on
memory, energy consumption, processing power and space. The latter would
fit the requirement, but they do not provide the ability for reloading code
at runtime (and are not freely available or even open-source, either). Us-
ing open-source variants, despite the fact one would have to find one first,'2
would provide for adaptability of needed features and make it possible for
experienced developers to include new ones. Since this approach is several
layers of abstractions too low if rapid prototyping principles are to be applied
and to use already existing tools and concepts, a new mini kernel, written
in DSP assembler, is to be developed, which suits the needs exactly and
is very low on overhead (in speed as well as in functionality and resource
requirements).

Task handling in these OSs is done by a main executive providing several
different multitasking scheduling principles. Common to all of them is the
requirement of tasks already existing in the system to be schedulable. Out of
this set of tasks the one with the highest priority according to the scheduling
algorithm (round-robin, first-deadlines-first, etc.) is chosen and being exe-
cuted. Also interrupts are handled by these DSP-OSs and depending on their
interrupt priority each of them can interrupt another interrupt. The usual

SURI: http://www.eonic.com/mainnav.cfm?webcat=2&levell=1&level2=29
6URI: http://www.microware.com/Products/Software/0S9.html
"URI: http://www.qnx.com/products/os/rtos6.html
8URI: http://www.qnx.com/products/realtimeplatform/index.html
9URI: http://tao-group.com/2/tao/elate/elatefact.pdf
OURI: http://dspvillage.ti.com/docs/toolssoftwarehome.jhtml
1At http://www.realtime-info.be/encyc/buyersguide/rtos/Dir228.html a com-
prehensive list of RTOSs can be found.
120ne approach could be RTEMS as utilized in a mixed architecture high-performance
real-time system described in [FMF98]. RTEMS is as a real-time kernel embed-
ded into the FRESCO system, an open-source development environment maintained
by ESA which consists of ports of gcc and gdb, published under the GPL. Un-
fortunately, however, it seems to be abandoned by now, according to the pages at
http://www.estec.esa.nl/wmwww/EME/compilers/Fresco/erc32/fresco.htm.
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design process with these OSs includes generation of task sets and download-
ing of the complete executable including the executive onto the DSP before
starting. The author is not aware of any DSP OSs featuring task reloadabil-
ity in a quick and low overhead imposing way. These OSs handle tasks and
data depending of their state in time rather than in amount of data. Time
intervals and points in time define the execution order of the application
tasks. In that they are of no real relevance to the dataflow driven executive
discussed and expanded in this thesis.

The typical embedded DSP system is developed on simulators running
on workstations while the resulting end product runs stand-alone with no
connection to a host whatsoever. There is no or little need for a software or
firmware change throughout the lifetime of the product if the design phase
has been executed properly enough. Mostly, however, problems arise due
to the simulation of the systems. As a simulation can never be perfectly
accurate, the most common causes for failures on the final target system are
incompatible interface timings [BELP96]. In order to circumvent this disad-
vantage, developing directly on the target hardware is desired. As this usually
is very dangerous if the target system is already running and has to stay as
available as possible, methods have to be implemented to ensure continued
availability even in case of buggy code downloaded onto the hardware.

As distributed computing and parallel processing becomes more and more
intriguing and applicable for the ever more networked computers and sys-
tems, different approaches have to be investigated. The often-cited networked
refrigerator is an example for networked embedded systems where the reload-
ing of tasks could be used to tailor the algorithm to build the list for food
orders more to the need of the customer while preserving requirements for
a small footprint of the resulting system as the new code is not required to
reside at the target system.

The OSs discussed above enable programmers to implement their solu-
tions in a simple albeit static way. Once the system has been configured it
can not be changed easily anymore. Maintenance of such systems mostly
involves shutting it down, change of firmware and restart of the complete
system. In high available systems this behavior cannot be tolerated. Remote
maintenance is completely rendered impossible with such a setup, but this
would heavily decrease maintenance costs as no technician at site would be
necessary anymore. To achieve these testing and maintenance facilities a
mechanism has to be developed that implements the following features:
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e downloading code onto DSP memory at run-time
e software fault tolerance principles
e rapid prototyping facilities

In this thesis a mechanism has therefore to be developed to provide the user
with a dynamic behavior in that the system could change at run-time. Due to
the ability to reload code onto DSP memory scheduling could then be changed
and even the executive exchanged to a new one to include new application
tasks or exclude obsolete ones. With this possibility even (unintendedly)
changing hardware could be supported, once the changes can be detected
(which can be as simple as timeout or watchdog functions). It is therefore
necessary not only to implement the means for loading mechanisms but also
additional properties to supervise these code exchanges as these exchanges
are a crucial part for the stability and usability of the system. The next
chapter, therefore, deals with (software) fault tolerance principles and how
they could be implemented to increase overall system stability and make easy
maintenance possible.

2.4 Fault Tolerance

2.4.1 Principles

Technical systems, if designed by humans, are not error free, especially if it
comes to software in computer systems. There is no way to mathematically
prove if software is bug-free.!®> Moreover all the errors in software are design
faults and hence are not predictable. Therefore no provisions can be make to
work around these faults as long as they are not known. Running software
cannot know by itself that it is behaving in an unintended way. On the other
hand, increased reliability is required by systems, especially if human lives
depend on them. Hence, methods have had to be developed to cope with
bugs, errors and faults in general in a way, where continued live support and
reliability can be assured. The main point of fault tolerance therefore is, how
to continue a service once a fault has occurred.

131t is in fact noted by [LYC99], that “Some faults will always remain, and the level of
faults in released software are typically between 1 and 10 faults per 1000 lines of codes.”
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To mitigate the effects of ill-behaving software or, to put it more generally,
controlling entities in systems (which applies to hardware as well), concepts
have been developed to allow for faults and recover from the impacts on
the system. These concepts can be summarized under the topic of fault
tolerance. To be able to decide on which aspects of fault tolerant systems
shall be implemented during the work for this thesis, an overview of the
theoretical definitions and notions shall be given here.

According to [LA90| and as can be seen in fig. 2.2 (p. 12), system lifetime
can be divided into three phases: design and implementation, debugging and
testing and the in-service.

Design & implementation ‘ Debugging & testing In-service
Fault avoidance ‘ Fault removal
) Fault tolerance
Fault prevention

Figure 2.2: Phases of system lifetime

Design and implementation describes the specification phase of a sys-
tem. Here the overall operation modes are defined. Most of the situa-
tions where faults can occur have to be eliminated early in the design.
It is always better to search for alternative possibilities to implement
a specific problem, than to have to check for too many possible errors
later on. Here, fault avoidance has to be pursued.

Debugging and testing has to be performed thoroughly to be able remove
as many errors and faults, that have been introduced while implement-
ing the system, as possible. It is not always applicable and desirable
to strictly divide the testing and implementation phases. As faults are
encountered they have to be removed, hence this is also called the fault
remouval phase.

In-Service denotes the working phase of a system. It is running on its final
target hardware, fulfilling the tasks it has been developed for. In this
phase it is no longer possible to change the system in a simple way.
Furthermore it should not be necessary to change it. This is the phase,
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where fault tolerance can and has to be applied, as in this phase the
system has to cope with faults all by itself.

The first two phases can be collected under the topic fault prevention,'*

the third is where fault tolerance will be applied. Fault prevention has to
massively utilize techniques to avoid bugs in systems while still in design
phase. One way to do this is to partition the system in smaller and smaller
parts which can easily be tested and only compile it afterwards into a system
of increasing complexity but with tested modules. This way desired operation
of complex systems can be produced much easier and more reliably [Vra96|.
For this, the modules of course have to feature defined interfaces and have
to be as independent from each other as possible, which in itself hinders
application of synergy effects of cross-task register usage only if these are not
well-defined. Another possibility (without having to strictly split modules
from each other) is the introduction of points of control and observation, as
suggested in [Vra96|, where test stimuli can be applied and values be read
out at a desired point in the system while running. Although this is mainly
applied in hardware testing, it is also usable in software at the cost of, for
example, interrupt routines reading out or inserting desired values at specific
points.

As stated above, software can never be completely bug-free. To be able
to handle different types of errors and faults, these have to be classified. A
basic work on classification is by Lee and Anderson [LA90|. They describe
two basic classes of faults: anticipated and unanticipated ones.

Anticipated faults are values out of range (typed in by the user for exam-
ple) or divides by zero, for example, where effective countermeasures
can be applied by prompting the user again to input a correct value.
Furthermore failures of hardware components can be anticipated as
they will eventually fail. Appropriate fault tolerance measures can be
implemented into systems to detect when hardware failures occur and
ensure continued service by, for example, switching operation to a spare
unit.

Unanticipated faults are design faults, as the effects of such faults will be
un-anticipatable. What is more, the only type of fault that exists in

14 Also called “fault intolerance” occasionally [AK83].
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software, is a design fault, as software does not degrade over time, as
hardware does.'®

2.4.2 Software Fault Tolerance

Fault tolerance is mainly applied for hardware faults [LA90, p. 205] [LGH80],
but techniques have been developed to cope with software (design) faults.
Two major concepts are usage of a recovery block and n-version programming.
These concepts are not implemented into the system developed during this
thesis, but as reloading of code is provided, n-version programming can easily
be supported.

Recovery block scheme provides for automatic backward error recovery
implicit by the mechanism, error detection by the acceptance test and
fault treatment through the use of alternate modules. As backward er-
ror recovery is applied, no damage assessment is necessary. The scheme
is implemented by establishing a recovery point prior to the call of a
task and testing the output afterwards for acceptance. In the case of
failure, the system will backtrack to the recovery point and start an-
other, secondary, module with the same data provided on the inputs.
This can be repeated as often as there are different modules available
for this task to be computed. Also nesting of this scheme is possible.

N-version programming describes a process where routines are imple-
mented not only once, but independently from each other in n ver-
sions. All of them are executed with the same set of data and their
output compared to each other in a sort of replication check. Based on
a majority vote, this check can then eliminate erroneous results. The
difference to the recovery block scheme is, that every available module
will be executed in every case and not if one of them fails. The ad-
vantage being constant execution time in all cases, even though it is
longer in overall for most cases. The problem however exists, on how to
decide on the correct result if the outputs are principally all correct but
differ, for example because of different rounding of numbers or usage
of different approximations.

15 Although there have been investigations by Intel into ‘bit decay’ (or ‘bit rot’) due to
cosmic rays, single-bit errors are mostly caused by design failures in RAM modules. See
http://www.tuxedo.org/jargon/html/entry/cosmic-rays.html.
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2.4.3 Implementational Issues

In implementing a system, the developer has to decide on where and how
much fault tolerant techniques should be applied. The system’s reliability
should increase up to the the desired (or affordable) level, but it will be much
too costly (time and money) to implement redundancy and tolerant measures
in every bit of the system. As component failure can often be mathematically
predicted (and is in most cases the underlying cause for failure), it is of use
to apply probabilistic methods to assess these reliability parameters [LA90,
p. 58].

This thesis will cover aspects of fault tolerance as indicated above at
relevant positions. To provide for high availability, the system also has to
contain deadlock detection and be able to re-synchronize with the host, once
communication has been lost. It would be desirable to implement deadlock
prevention, but that proves to be difficult to be implemented in a general
manner [LA90, p. 135]. What will be implemented is the ability to detect
deadlocks and react accordingly by sending error packets to signal the situ-
ation to the host (as will be done on detecting any other error, too), to re-
synchronize if possible, and then retransmit the failed packet. This approach
is similar to the one suggested in [SSBS99, p. 172|, where in a concurrent
system all pending transfers are stopped and the complete process has to
be tried again. This of course adds to overall execution time, which very
likely leads to a failure due to exceeded time-slots, as all these techniques
mentioned above are developed for cyclic real-time applications and there-
fore the tasks have to be repeatedly executed in a strict schedule. In [AK83]
a system is mentioned that has a deadline such that there is always time to
execute a secondary (alternative) module, should the primary module fail,
to at least provide a degraded service.

In the context of theoretical work, the concept implemented here is an
implicitly defined recovery point, as on the occurrence of faults the process
is rolled back in time and tried again. This of course only pays in the case of
transient errors due to spikes on data lines, it does not help for more severe
faults like bits of a data bus tied to a fixed level or floating lines.!®

On the question of handling erroneous situations, it generally is good style
to check all return codes for error values and act accordingly.’” In [SSBS99],

16Described in [Pra80] as unidirectional and random errors respectively.
17Tt has to be noted, that in nearly all situations concerning calling of sub-routines or
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however, it is stated, that “it is usually a waste of time to check the value.”
This remarkable sentence becomes more graspable after having read the com-
plete paragraph. It is assumed that one can start sensible actions, once an
error is detected. In parallel processes, as discussed in [SSBS99], there is not
much that can be done after a communication error occurred, other than re-
peat the complete process. Therefore it is of little interest which value failing

functions return.'®

2.5 Reconfigurability

A lot of work has been done in the field of reconfigurability of FPGA systems
up to the introduction of partially reconfigurable FPGAs like the new Xilinx
Virtex!? (and Spartan) devices. Not much can be found in the literature
on reconfiguration of DSP systems at run-time, however. Since the FPGAs
mentioned above are only reconfigurable in “columns” they are not that useful
if one wants to have general freedom in reconfiguring devices or parts of one’s
design. Moreover, the internal organisation of the FPGAs has to be known
very well to be able to divide the functionality into parts that can be re-loaded
at all. This very device dependant behavior does not encourage developers
who are trying to implement portable and open designs as they are bound
to this device for a certain time.

Professor Villasenor,?? from the UCLA Adaptive High Performance Scal-
able Dynamic Computing Department, states in the introduction to his pro-
posal for dynamic computing architectures [Vil95| that throughout his pro-
posal “Dynamic computing architectures, based on low-cost commercial re-
configurable logic technologies, will be developed for real-time military signal
processing applications, with teraops computing requirements.” and “Dy-
namically reconfigurable logic devices (FPGAs) will be re-used across several

functions, it is not only good style, but indeed necessary to check for the return values
as only by checking on success or failure further problems, up to system crashes, can be
avoided. This holds especially in concurrent and multi-tasking systems, where resources
are not exclusively available. More details about proper error handling can be found
in [Agl99].

18The user-level Message-Passing Interface, MPI, used in Beowulf is in fact shielding
the application programmer from basic communications that no error handling at all is
performed in the user program. If it does not work, the fault at hand is of such nature,
that a program could not circumvent this problem all by itself in any case.

YURI: http://www.xilinx.com/partinfo/databook.htm#virtex

20URI: http://www.ee.ucla.edu/faculty/Villasenor.html
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algorithms in real-time to increase functional density, while exploiting low-
cost microprocessors to compute intensive tasks that do not map efficiently
to FPGAs.” Though Villasenor aims at the re-usability of FPGAs in space-,
memory-, or device-restricted systems in connection with cheap microproces-
sors, the same principles are applicable to re-usability of memory attached
to DSPs and the DSPs themselves.

In his proposal Villasenor also applies the term “dynamic computing” to
FPGA systems [Vil95|. He divides dynamic computing into three parts:

e scalable dynamic architecture
e compilation tools for this scalable architecture
e tools for dynamic compilation

These terms are general enough to be used in other contexts, too. A scalable
dynamic architecture is comprised through its definition as an architecture
which is able to scale both performance and problem size. After upgrades it
therefore not only speeds up execution time but is also able to solve larger
problems. This is possible for many loosely tied multi-processor systems like
a multi-DSP board or a network of workstations.?!

Scalable architectures can be used simply as a conglomeration of work-
stations whose idle time is used or can be dedicated computing farms. In
either case, special tools are needed to distribute the tasks at hand onto the
available processing nodes. These tools can be simple scripts, starting tasks
one after the other on nodes as they become available after completing the
previous task, or they can be sophisticated compilation tools, implement-
ing message parsing and employing concurrent tasks communicating with
each other as they are executed on the computing nodes. These compila-
tion tools especially have to consider partitioning as the computing nodes do
not always provide the same processing power. Dynamic Compilation as a
concept extends the concept from mere distribution of pre-compiled tasks to
compilation at run-time.

At that point the available processing nodes are known and an optimal
distribution of tasks can be dynamically assessed. This of course provides
for the most flexibility in distributed computing as there are no restrictions

210ne famous example of a network of workstations working to speed up problem solving
is Beowulf clustering as described in [SSBS99].
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for the tasks as they adapt dynamically to the available hardware at each
execution cycle.

Since [Vil95| only targets his proposals on FPGA systems, the next step
would be to use mixed architectures (DSP and FPGA both used simulta-
neously). In this thesis, however, the system is restricted to multiple DSPs
attached to a host system.?? Nevertheless, interesting aspects have emerged
from research into mixed architectures [LEAP95, Miic01, FdAar].

220ne can argue, however, that homogenous systems are simpler in programming and
more straightforward, as only one target system is in operation and timing and synchro-
nisation seems to be more compatible.



Chapter 3

Principles of Operation

3.1 Overview

In this chapter and overview of PEPSY and the context of this thesis to
PEPSY is given. Principles of operation of the developed kernel are given as
well as a description of the data transfer mechanisms from host to the DSPs
and back to the host.

Development with PEPSY can be divided into different phases, shown in
fig. 3.1 (p- 20). Inputs to the optimizer are the user defined application model
and the system defined hardware model. Together with mapping constraints
and optimizing parameters the optimizer computes mapping and scheduling.
Code synthesis tools compile the user provided sources together with system
specific communication and transfer tasks and link them to an executable
code.

The rapid prototyping system PEPSY as it exists at the institute for
Technical Informatics is based on accurate performance estimation [RRS00).
This concept will also be used here to provide compatibility to the existing
tools. Accurate performance estimation is only possible due to the fact that
the amount of execution cycles an assembler command needs on a specific
target hardware is known before the schedule has to be constructed. This
information can either be gained by compiling the sources and summing up
the needed cycles command after command as listed in a look-up table, or by
timing the execution while having the task run on a live target. The second
method is supposed to be more accurate as live information can be gained,
if one can determine the exact overhead imposed by the time keeping itself.
The first means to trust data-sheets.

19
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In this thesis an extension to PEPSY is developed which allows task
reconfiguration and data exchange in a run-time environment. It provides
the possibility to add tasks to the executive and also to automatically kill
tasks exceeding their initial time limit. Therefore a small kernel runs on the
DSPs. This kernel has to be compiled into the executive as an additional
task. As the application model is specified in human readable form, this
addition can easily be managed. Despite the kernel’s ability to run on each
DSP in the system, there is no need for that as it can make much sense in a
tight scheduling loop just to have the kernel run on a single DSP.

The kernel itself will be called as a task (but can also be run in a stand-
alone mode) and then looks for commands transmitted from the host. If
there are none, the application task the kernel supervises will be executed
according to the flags provided by the user. If there are commands (like code
downloading or uploading or starting of tasks) from the host they will be
executed and control will be given back to the calling executive afterwards.
With this the kernel is enabled to download code (or data) from the host
into the DSP RAM and also upload data back to the host. It can also start
and stop application tasks as well as having them run in a supervised mode
to provide for increased system stability. Data transfer from and to the
host computer is strictly packetized and consists of 16 words in each packet.
In this, data transfer takes more time but real-time constraints can still be
observed as only a fixed and small amount of data has to be transferred.
Furthermore each packet is check-summed via CRC to provide data integrity
and be able to recognize synchronization errors.

3.2 Data-flow model and code requirements

The existing system is modelled on research in rapid software prototyping
based on accurate performance estimation as described in [RRS00], where
“Each function has a unique name which is also specified in the applica-
tion model.” Data transfer from one task to another one is done via buffers
located in DSP memory. This yields a simple structure throughout the sys-
tem. To further increase simplicity and therefore testability of parts of the
system, “a function implementing a task must not return a value” [RRS00].
Its parameters will be transferred to and from the task by the input and
output buffers defined in the function prototype. The structure can be seen
in fig. 3.2 (p. 22). Here B1 through B4 denote data buffers used for input and
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output. The location of these buffers will be passed to the tasks T1 through
T3 by either parameters (if programmed in C) or as pointers on the stack (if
programmed in assembler). This allows for a simple data driven structure
of the system without any need of additional synchronization as all neces-
sary synchronization is already achieved due to the fact that tasks have to
wait for full input buffers before commencing work. For example, task T3
can only start once buffers B2 and B3 are filled up by tasks T1 and T2. A
possible Gantt diagram could then show dependencies as in fig. 3.3 (p. 22),
where C denotes communication tasks copying data from one processor P1 to
another processor P2 and back to the first one after ending of task T2. The
communication tasks (C), which move buffers, are pre-written by the system
developer and provided for the user who writes the application tasks (Tx).
This is because these communication tasks not only have to be highly target
specific and optimized as much as possible, but also have to be provided
in order for the rapid prototyping system to be able to automate the code
generation process. As can be seen in fig. 3.3, task T3 only commences once
it has all data, despite of task T1 having finished earlier. What is not shown
in fig. 3.3 is the executive due to clarity. The executive of course also loops
at the end of the execution of tasks.
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Figure 3.2: Data-
flow in the original Figure 3.3: Execution order in the original
task model task model
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The synthesis tools to generate executable code have several requirements
that have to be met by the programmer, for them to be able to produce multi-
processor code for the DSPs. First, source code for all application tasks has
to be provided by the user. Communication and synchronization routines are
system dependent as is the memory allocation map and an executive. These
have to be provided by the system developer. All but the first requirement
can be automated, as the application always has to be provided by the user.

The matter of providing sources for the different parts of the system seems
trivial, but it has to be considered, that code for the communication tasks
(depicted by arrows in the hardware model in fig. 3.1) is hardware-specific and
has to be provided for an individual multi-processor system by the developer
for that system as the user must not need to know all the internals. This
system’s principal intention is to introduce layers of abstractions between the
hardware and the implementational issues the user has to deal with. They
only have to provide code for the application tasks, everything else is part of
the framework provided by the development environment. Only with these
premises rapid software prototyping becomes possible.

The user provided source preferably is written in C and has to be syntac-
tically compatible to the structures used within PEPSY. An example task
prototype that can be used as a template for new developments is shown in
fig. 3.4 (p. 23). This example task task1 reads data from buffer b1 and after
computation writes its results into buffer b2. The definition of the sizes of
the buffers and their allocation is one offline by PEPSY’s optimizer.

D_TYPE in_buf [BSIZE_IN];
D_TYPE out_buf [BSIZE_QUT];

void taskl (D_TYPE in_buf, D_TYPE out_buf);

Figure 3.4: Example task Prototype

The communication and synchronization routines provide the intercom-
munication means for the tasks and implicitly implement the correct data
flow as intended, as interprocessor communication is realized by introducing
a dedicated sender task on one processor and a receiver task on the other

!The term user shall here denote the programmer actually using the rapid prototyping
software, not the end-user employing the prototyped software.
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processor, as is shown in the example executive source in fig. 3.5. Tasks only
commence work once all necessary data has been gathered or arrived at their
input buffers, which have to be allocated by PEPSY alongside the scheduling
phase as the memory map is decided upon.

In PEPSY memory allocation for buffers can either be static or dynamic.
Statically allocated buffers result in a faster execution of the executive. Dy-
namically allocated buffers are more memory efficient, since buffers can be
released after the last receiving task has read the buffered data. Although
memory efficiency would be desirable, dynamic memory allocation cannot
be applied here as the buffers have to stay alive after execution of a task,
because the dynamically introduced tasks could use any of them, but it will
only be executed at the end of the predefined cycle, as can be seen in chap. 4.5
(p. 47).

The executive builds the main loop for cyclic calling of tasks and runs on
each target processor and controls the execution of the tasks. An example C
source fragment for an executive is shown in fig. 3.5 (p. 25). In this example
communication buffers are statically allocated. A unique buffer is used for
each arrow in the data flow graph used to generate that executive. The entry
point (function name) for each task is derived from the task list generated
by the optimizer. In this example receive (bl, pl) receives data from
processor pl and writes it into buffer bl. task 1 uses the data in bl to
generate its output and writes it into buffer b2. send (b2, p2) sends then
data in buffer b2 to processor p2.

The order of task calls in the executive is defined by the schedule gener-
ated by PEPSY. It’s optimizer is based on simulated annealing which allows
a formal specification of different optimization objectives. This ensures op-
timal usage of available resources and fastest possible execution under given
constraints and importance of different cost factors like time, speed or energy
consumption.

The execution time of the tasks (which have to be known for the opti-
mization to be able to work) are measured on a simple system with only one
DSP attached. Once execution parameters of each tasks are known, PEPSY
can build a system-wide schedule consisting of all tasks and assign remaining
time slots to the newly developed mini kernel’s watchdog facility.

For portability issues, XML has been used with PEPSY to describe the
data flow and intercommunication of tasks and will also be used in this thesis
to provide seamless integration into existing systems. Also human readability
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D_TYPE b1[BSIZE1];
D_TYPE b2[BSIZE2];
D_TYPE b3[BSIZE3];

void executive()

{
receive (b1, pl);
taskl (b2, b2);
send (b2, p2);
task3 (b2, b3);
send (b3, p3);

}

Figure 3.5: Example executive source

is pertained by the use of a non-binary format and thus changeability as well
as adaptability by a user is provided.

The whole system will be automatically scheduled offline by PEPSY,
based on performance estimation gained by analyzing the code to be com-
piled. The scheduling algorithm provides an optimal distribution of tasks
onto available resources. Furthermore, the system can be partitioned into
different executing entities by assigning costs (in the speed, time and energy
domain) to each implementational method [Miic01].

In this model, SDF has been applied to describe the behavior of the sys-
tem. This provides for simple mechanisms in automating the implementation
by scheduling and partitioning tools, but it limits the possible applications
as no dynamic aspects can be introduced into the system. All tasks have
to be known at compile time and once the system is running, nothing can
be changed without resetting it. To circumvent that restriction, this thesis
develops further mechanisms to expand the abilities of the system.

The code generation tools communicate to each other by means of XML
to provide for portability, human readability and ease of manual changes to
the intercommunication. All the information they need to work properly
can be found in these describing XML files, part of which are generated
automatically by more basic tools. The input these tools need are the sources
of the tasks and their logical connection to each other, i.e. the data flow in
the system. They output readily compiled packages, which only have to be
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downloaded onto the DSPs to execute in the correct way and provide the
intended behavior.

No provision has been taken, however, to prevent single tasks from wreck-
ing havoc in the running system as only the tasks are running on the DSP
and no supervising entity is available. It has been tried to address this in
this thesis by application of simple memory protection and use of watchdog
facilities to increase overall system stability and availability. On the other
hand no further protective mechanisms have been implemented as this would
unacceptably increase processing overhead and is one of the causes a small
kernel has been favoured instead of a readily available real-time kernel as is
further described in the next chapter.

3.3 Reconfiguration Mechanism

3.3.1 The Kernel

The kernel is the main part of the work done throughout this thesis as it
comprises the main functionality introduced into the task model. This kernel
is not only able to execute a task starting at a specific location in its memory
space, it also downloads code chunks into its memory while protecting its own
memory space, supervises the execution of the task and stops it if necessary.

The kernel can either be run in a standalone mode, taking over the com-
plete DSP it runs on, or be switched into a special task mode to stay com-
patible to PEPSY and accompanying tools, where it will execute the task
only once and return control and results back to the calling executive loop.

As a main feature, this kernel can be used in a multi-DSP environment
with multiple instances of the kernel running in parallel, one on each DSP.
This is made available and heavily simplified by the possibility to just pass
on commands to the next DSP in a tree structure and return the up packet
from that DSP. No local computation has to be executed to facilitate this as
only forwarding of data is applied.

As there is no necessary communication between instances of the kernel
on different DSPs, it will become possible to run this kernel on each DSP
(as long as they are connected in a tree and the root DSP to the host) and
only have commands passed through the other kernels. This system is freely
scalable and adapts itself to available or actually used hardware.

To understand the communication taking place between host and DSP,
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the following sections explain in detail the commands passed on and returned
on the line down from the host to the target DSP. As each packet is passed
along with its corresponding CRC, integrity of data is ensured by this check-
sum over the complete pass as only the first and the last entity have to and
will check that integrity.>

3.3.2 The Host Tool

The host computer, connected to the root node in the DSP tree, is the
master of all communications. It is the only initiating entity, only the host
can send commands. DSPs are merely able to answer commands or pass
them on to the next DSP down the tree structure® (see fig. 3.6, p. 27). Only
one DSP can be attached to the host as the host interface is realized via
a single communication port. As the DSPs feature several communication
ports (for instance 6 on a TMS320C40 DSP from Texas Instruments) the
number of connections between DSPs is only limited by the amount of free
communication ports.

DSP

DSP DSP

Figure 3.6: Tree structure of DSP connections

2That behavior can be compared to ATM, where only the endpoints of a network
connection test on data integrity and not each forwarding router as was (and still is) true
for other network protocols like FR.

3This is only TRUE for command execution and answers. Normal communication
between DSPs as intended by their respective application is in no way influenced.
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The host tool is able to show and use all of the facilities implemented into
the mini kernel to extend the system to the desired level of abilities. With
this tool the kernel on one of the connected DSPs is addressed and receives
commands that are then executed by the DSP and an answer packet is sent
back to he host. The mechanism implemented for command execution can
be seen in fig. 3.7 (p. 28).

start

Y
host sends command
packet

A 4

DSP executes command

A 4

DSP sends return packet

Figure 3.7: Mechanism of command execution

3.3.3 Communication Protocol

There is a protocol needed for the host to communicate to the DSP attached
to it. Other DSPs connected to the first one cannot directly talk to the host,
they have to be configured and provided with data and commands sent by
preceding DSPs. These however will in return receive the commands from
the host and only pass them along as is described in the routing bits of the
command notifier (bits 32-8 in word 0 of each down packet).

This protocol has to provide secure and reliable data transfer. Data
is transferred in binary without additional encryption, the protocol itself
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is a lookup code consisting of packets of a dedicated number of words to
fill up the input and output FIFOs in both communication ports at the
sending as well the receiving side of the communication. In the case of
loss of sync between the two communicating parties, this situation shall be
detected and cleared without user interference necessary. To address kernels
on more distant DSPs, data forwarding has to be implemented to be able to
serve DSPs connected to the host in a tree.

The first word of the transmitted packet determines the operation and the
route the packet has to take as it passes along the DSPs to find the target.
All communication originates on the host, the DSP is merely a slave on the
communication port to the host.

Downloading of new code is also organized in packetized transfers. The
number of these packets is determined by the host program to suit the kernel
on the DSP as it has to fit into the real-time constraints imposed by already
running tasks. The code will therefore be split into several packets, each
transferred to a new start address as data transfer and a subsequent packet
is sent to the DSP to start the newly downloaded task.

In the next chapter implementational issues are discussed and internal
principles will be explained.



Chapter 4

Implementation

4.1 Target System

The target system used is a 19” industry PC with two Transtech! boards,
each equipped with four TMS320C40 TIM modules (as can be seen in fig. 4.1
(p- 30) as a block diagram), and an ADAC analogue input/output card?
specially designed for communication with the C40. Fig. 4.2 (p. 31) shows
the connection between the Transtech board and the ADAC card.
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| [ I ] FIFO Host
Interface

Figure 4.1: Block diagram of Transtech TDMB412

The TMS320C40 processor, called C40, used in this thesis is a digital sig-
nal processor made by Texas Instruments®. It has been designed for parallel
processing and therefore offers several distinguished features:

LURI: http://www.transtech-dsp.com/c4x/tdmb412.htm
2URI: http://www.adac.com/catpages/5403dhr . html
3URL http://www.ti.com/
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Figure 4.2: Connection between Transtech board and ADAC card

e The CPU has a floating point and integer multiplier, a 32 bit barrel
shifter, internal registers and internal busses for data transfer. It is
able to execute 32 bit integer and 40 bit floating point multiplications
in a single CPU cycle.

e Memory can be up to 4 Giga words, each 32 bits. It is linearly addressed
and can also consist of read only memory.

e There are internal busses on the C40 for parallel operations:

— programme busses
— data busses

— DMA busses
Additionally there are two busses for external memory.

e A very important feature of the C40 is its 6 communication ports which
offer very fast bidirectional interfaces. They have a FIFO queue with
a depth of 8 words. The maximum transfer rate is 5 megawords per
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second. They provide a simple means to connect several C40s to a
multi-DSP system.

e The DMA coprocessor located on the C40 has access to all of the RAM
via 6 channels without having to interact with the CPU.

The DSPs on the Transtech boards are already pre-configured in their
connections to each other via several communication ports, but they also
provide at least two free ports available for interfacing external hardware like
I/O ports or DSPs on the other board. The internal structure is designed as
such that tree as well as star topology can be realized for the system.

The Transtech boards also feature JTAG emulator ports to control the
DSPs at run-time via the development and debugging tool Code Composer.
That way developers can run their program while simultaneously reading out
memory locations or DSP registers. One has to take care, however, not to
kill the kernel once it is running by trying to download a task via the Code
Composer as the DSP will be restarted at that point.

The root DSP in the DSP tree (fig.3.6, p. 27) is connected to the host
only via communication port 1. On the host side this port is emulated by
byte-wide accesses to specific I/O addresses. As each communication port
on the DSPs feature an 8 word long FIFO, so does the host emulation of this
port. This yields a FIFO depth of 16 words. This length of 16 words was
also chosen as packet length for communication between host and DSP as it
fills up the FIFOs on both sides of the communication and therefore eases
detection of synchronization problems.

4.2 Protocol Commands

The commands, as listed in tab. 4.1, are packets consisting of 16 words each,
the first being the command denotifier and the last a checksum over the
packet. Unused words are filled up with zeroes. Only the host can initiate
communication with the DSPs, the latter are mere slaves, only receiving
commands or sending data on demand.*

Only the last two 4-bit nibbles (denoted ¢ in fig. 4.3) contain the com-
mand. The first 6 nibbles (24 bits) describe the route to the target DSP.

4 Again, this is only valid for DSP-host communication. The normal operation of the
DSPs is not influenced by this strict client-server model.
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command word operation
0x00000000 request status
0x00000001 initialize download of code
0x00000002 download packet
0x00000003 start task
0x00000004  stop/kill task
0x00000005 send buffer contents to host
0x00000006 set mode
0x55555555 error packet

Table 4.1: Commands used in DSP-host communication

This concept provides for addressing individual DSPs as long as they are
connected to each other in a tree structure and the root communicating with
the host.

bits ‘ XXXX XXXX XXXX XXXX XXXX XXXX CcCC cccc
nibble | 5 4 3 2 1 0

Figure 4.3: Structure of command word

As the command passes down the tree, each DSP getting the message
checks nibble 0 (see fig. 4.3). This nibble describes the next target. If it
is zero, the message is for the local DSP, otherwise it will be passed on via
the communication port described in the nibble, and the nibble itself will
be cleared by moving all remaining nibbles 4 bits to the right filling up the
word with zeroes. Fig. 4.4 (p. 34) shows an example configuration with DSPs
connected via various communication ports. To start a task on DSP 5 the
command word would have to be 0x00009703.

Word 15 in each down packet and words 14 and 15 in the up packet
consist of a CRC, as calculated by the sending entity. Word 15 in the down
packet (sent by the host) is the CRC over the 14 preceeding words, word 14
sent by the DSP is the CRC over the (down) packet sent by the host to the
DSP, as calculated by the DSP. Word 15 in that packet is the CRC over all
of the preceeding words, including the CRC for the down packet (word 14).

Below all the implemented commands are listed with a detailed descrip-
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DSP 4 DSP5
0x0 0x0

Figure 4.4: Addressing of DSPs

tion of their workings and a tabular enumeration of the contents of the ac-
companied command packets as they are transmitted from host to DSP and
back to the host.

4.2.1 0x00000000 - request status

This command requests a status packet from the kernel running on a DSP
connected through the tree to the host. The kernel version and some test
value are transmitted with this command. It is implemented mainly for
testing and debugging purposes. Furthermore the status of the watchdog
and the timer interval is read back.

kernel version vv.rr.ss.ss: v...version, r...revision, s...sub-revision.

test value a value transmitted to the host for debugging and testing.

0x00000001 interrupt occurred, task too long

hedule fl
Sehedie T8 1x00000002 interrupt did not occur, task OK
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word | contents word | contents

00 | 0x00000000 00 | 0x00000000

01 (0 01 | kernel version

02 |0 02 | test value

03 |0 03 | schedule flag

04 (0 04 | time interval

05 (0 05 | run mode

06 |0 06 | start mode

07 |0 07 |0

08 |0 08 |0

09 |0 09 |0

10 |0 10 |0

1 |0 1 |0

12 |0 12 |0

13 |0 13 |0

14 |0 14 | CRC (host — DSP)

15 | CRC (host — DSP) 15 | CRC (DSP — host)
Table 4.2: request status: data Table 4.3: request status: data
from host to DSP from DSP to host

time interval the time span after which the watchdog fires if not reset be-
fore. If the watchdog fires, a task has utilized too much processor time.
The watchdog is switched off if this value is set to zero.

0x00000001 run standalone
run mode .
0x00000002 behave like a task

0x00010001 download only
start mode 0x00010002 run once
0x00010003 run continously

4.2.2 0x00000001 - initialize download

Due to the variable size of packets containing code, communication has to
be done in two steps. First, the kernel on the DSP has to gain knowledge on
how many words to await from the host, the data itself is sent in a second
packet.’ These two commands (0x00000001 and 0x00000002) are also used

5See chap. 4.2.3 (p. 37).
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if memory or buffers on the DSP have to be filled up with predefined data.

word | contents word | contents

00 | 0x00000001 00 | 0x00000001

01 | # of section 01 | # of section

02 | size of section 02 | size of section

03 | load address 03 | load address

04 | start mode 04 | download status

05 | start address 05 |0

06 |0 06 |0

07 |0 07 |0

08 |0 08 |0

09 |0 09 |0

10 |0 10 |0

11 0 11 0

12 0 12 0

13 |0 13 |0

14 |0 14 | CRC (host — DSP)

15 | CRC (host — DSP) 15 | CRC (DSP — host)
Table 4.4: initialize download: Table 4.5: initialize download:
data from host to DSP data from DSP to host

# of section if code has to be split into multiple parts, this value denotes
the number of this part of the code.

size of section number of words to be downloaded for this section.

load address the address where data has to be stored.

0x00010001 download only
start mode 0x00010002 run once
0x00010003 run continously

start address the address where program execution has to jump to, to com-
mit, execution of the new task.

download status 0x00010001  allowed
0x00010002 denied
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4.2.3 0x00000002 - download packet

Due to the variable size of packets containing code, communication has to
be done in two steps. First, the kernel on the DSP has to gain knowledge
on how many words to await from the host®, the data itself is sent in this
packet.

word | contents
00 | 0x00000002
01 | # of section
02 | size of section
03 | load address
04 | download status
05 | task status
06
07
08
09
10
11
word contents 12
00 0x00000002 13
01 — (size) | data 14
(size+1) | CRC (host — DSP) 15

(host — DSP)
(DSP — host)

NOococcococoocoo

RC
RC

Table 4.6: download packet: data Table 4.7: download packet:
from host to DSP data from DSP to host

# of section if code has to be split into multiple parts, this value denotes
the number of this part of the code.

size of section number of words downloaded for this section.

load address the address where data (of this section) has been stored.

download status 0x00020001  successful
0x00020002 unsuccessful

6See chap. 4.2.2 (p. 35).
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0x00020001 downloaded only
task status 0x00020002 started once
0x00020003 running continously

4.2.4 0x00000003 - start task

Once a task has been downloaded onto the DSP’s memory, it has to be
started, if it is not already running.”

word | contents word | contents

00 | 0x00000003 00 | 0x00000003

01 | start address 01 | start address

02 | start mode 02 | task status

03 | time interval 03 | time interval

04 | stack address 04 | stack address

05 |0 05 |0

06 |0 06 |0

07 |0 07 |0

08 |0 08 |0

09 |0 09 |0

10 |0 10 |0

11 |0 11 |0

12 |0 12 |0

13 |0 13 |0

14 |0 14 | CRC (host — DSP)

15 | CRC (host — DSP) 15 | CRC (DSP — host)
Table 4.8: start task: data Table 4.9: start task: data
from host to DSP from DSP to host

start address the address where program execution has to jump to, to com-
mit, execution of the new task.

0x00030001 downloaded only
task status 0x00030002 started once
0x00030003 running continously

"It could already be started by using the start mode entry in the download packet
command as described in chap. 4.2.2 (p. 35).
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time interval The time span after which the watchdog fires if not reset
before. If the watchdog fires, a task has utilized too much processor
time. The watchdog is switched off if this value is set to zero.

stack address The address where the stack pointer has to be set to, to
provide for correct initialization of task.

4.2.5 0x00000004 - stop/kill task

If a task does not behave well, takes too long to execute or is finished and
its RAM will be needed, the task must be stopped and killed. A task that is
only stopped can be run again by issuing the start task command.® A killed
task is not in the DSP RAM anymore and cannot be started again.

word | contents word | contents

00 | 0x00000004 00 | 0x00000004

01 | start address 01 | start address

02 | kill mode 02 | task status

03 |0 03 |0

04 |0 04 |0

05 |0 05 |0

06 |0 06 |0

07 |0 07 |0

08 |0 08 |0

09 |0 09 |0

10 |0 10 |0

11 0 11 0

12 0 12 0

13 |0 13 |0

14 |0 14 | CRC (host — DSP)

15 | CRC (host — DSP) 15 | CRC (DSP — host)
Table 4.10: stop or kill task: Table 4.11: stop or kill task:
data from host to DSP data from DSP to host

start address the address where program execution had to jump to, to
commit execution of the task.

8See chap. 4.2.4 (p. 38).



CHAPTER 4. IMPLEMENTATION 40

0x00040001 stop task

Kill
lmode ) 0010002 Kill task

0x00040001 stopped

k
task status 10040002 killed

4.2.6 0x00000005 - send buffer to host

This is essentially the same functionality as in downloading code (or data)
to the DSP, but in the other direction. As all commands are initiated by the
host it is not necessary in this case to employ a two-phase protocol. Instead,
just the command is sent to the DSP, which in turn causes the specific amount
of data being sent back to the host.

word | contents
00 | 0x00000005
01 | # of section
02 | size of section
03 | start address
04 |0
05 |0
06 |0
07 |0
08 |0
09 |0
10 |0
0
0
0
0
C

11
12
13
14
15

word contents
00 — (size-1) | data

(size) CRC (host — DSP)
RC (host — DSP) (size+1) | CRC (DSP — host)

Table 4.12: send buffer to host: Table 4.13: send buffer to host: data
data from host to DSP from DSP to host

# of section if code has to be split into multiple parts, this value denotes
the number of this part of the code.

size of section number of words downloaded for this section.

start address the address where data (of this section) has been stored.
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4.2.7 0x00000006 - set mode

To allow applications the use of all timers, watchdog functionality can be
switched off. In order to do so, a mode switch is implemented to set and get
the mode of the watchdog and set the timer according to desired values.

word | contents word | contents

00 | 0x00000006 00 | 0x00000006

01 | time interval 01 | time interval

02 | run mode 02 | run mode

03 |0 03 |0

04 |0 04 |0

05 |0 05 |0

06 |0 06 |0

07 |0 07 |0

08 |0 08 |0

09 |0 09 |0

10 |0 10 |0

11 |0 11 |0

12 |0 12 |0

13 |0 13 |0

14 |0 14 | CRC (host — DSP)

15 | CRC (host — DSP) 15 | CRC (DSP — host)
Table 4.14: set mode: data Table 4.15: set mode: data
from host to DSP from DSP to host

time interval The time span after which the watchdog fires if not reset
before. If the watchdog fires, a task has utilized too much processor
time. The watchdog is switched off if this value is set to zero.

run mode 0x00060001 run standalone
0x00060002 behave like a task

4.2.8 0x55555555 - error packet

If an error is detected, this packet is sent back to the host instead of the
answer packet as described at the various commands. This packet signals
the host that communication has failed and the host can react accordingly,
for example simply try again.
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word | contents

00 | 0x55555555
01 | token word
02
03
04
05
06
07
No down packet. 08
09
10
11
12
13
14
15

NSO ODDODDODDODDODDOODOD OO oo

RC (DSP — host)

Table 4.16: error packet: data
from DSP to host

To further increase fault tolerant behaviour of the system, this packet
would be filled up with information on where a fault of which type occurred.
Information could be passed on concerning lost connections to parts of the
DSP tree or even regained communication notifies.

token word the word found at the position where a command denotifier
was expected. This helps in determining how far off the packet is from

the desired borders and how many words would therefore have to be
flushed from the FIFOs.

4.3 The Kernel

The kernel is the basic part of the system. It therefore has to feature tight
loops while testing for data on its controlling communication port and leaving
as much time as possible for the task to execute. To ensure this, several
provisions and design decisions have been taken as described below. The
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flow chart of the kernel is shown in fig. 4.5 (p. 43).
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Figure 4.5: Flow chart of the DSP kernel

The kernel has been written entirely from scratch in assembler with help
of Code Composer’s online debugging facilities. Hence it features small foot-
print and fast execution. Due to modularity in the source it is easily exten-
sible with additional commands and abilities. To keep the source small and
execution times within limits, all administrative tasks have been transferred
to the host. Therefore not only scheduling and mapping but also memory
allocation has to be done offline. The kernel itself does not have any mem-
ory protection but for his own code segments. As the kernel is only a task
if called by an executive, there is no way in knowing on where buffers and
other application tasks are located. Therefore the memory map has to be
manipulated on the host computer.

In the process of writing the code special attention was paid to construct-
ing it in a completely relocatable manner. By recompiling the kernel source
against a new command file, its memory map can be rearranged and its loca-
tion altered. Even protection of its own memory space is relative to relevant
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entry points and features relocatability. While it is possible to put the kernel
into local or global memory, for speed considerations it should be located in
the on-board memory of the DSP.

As the tasks are downloaded, they constitute only data as far as the DSP
is concerned. They only turn into executable code once the task is started
on purpose by the user. This way, data chunks can be downloaded as well
without the need to actually start anything at that point. This is useful for
filling up buffers before testing new tasks or overloading data into corrupted
memory in the case of faults to achieve at least degraded service by providing
some default data.

The memory protection implemented in the kernel protects its own code
and auxiliary memory locations from being overwritten while downloading
code or data. Nothing can be done, however, to prevent tasks from doing
harm once they are running as no protection can easily be built on processor
level.

As one main objective has been fast execution and small footprint while
conserving compatibility to existing systems, the other major aim was to
implement fault tolerance principles. These principles applied to software
development are again detection of errors and to react to them to avoid
faults in the execution of code. As all packets are checksummed by a CRC
recognition of transfer errors is made simple by checking this sum. Errors
in communication can occur due to loss of synchronization and therefore
shifting of packet borders.

Once communication becomes unreliable or packets are not scanned at the
correct borders any more, automatic resynchronization will be started. Error
packets will be sent, followed by a flush of the built in FIFOs, which effectively
restores communication. If there is still some spurious data left, this process
is repeated again until communication has successfully been restored. It was
shown while developing that this concept reliably works even in severe cases
of resets of only parts of the hardware or unreliable software operation.

As a further security against data loss or wrongly detected commands,
each packet is checksummed by a CRC and both the host and the DSP test
against this CRC for correctness of the packet. This also effectively enables
both of the parties to detect communication problems and act accordingly
by either resending the packet or flushing all the FIFOs and trying again.
This not only works in DSP-host communication but also on the internal
DSP communication lines.
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4.4 The Host tool

The host tool has to work together with the kernel and so has to feature
similar features like robustness and incorporate the same principles concern-
ing fault tolerance. Once errors in the communication are detected it has to
execute the same actions as the kernel does to regain communication. Due
to flushing the FIFOs before trying again, these actions do not have to occur
exactly at the same time, but the principle provides for some robustness.

As the host runs under Windows, development tools for this OS had to
be used. This, however, proved to be problematic, as these tools not always
worked as expected. Especially the software reset feature of the combined
system of DSP boards and ADAC board did not work until a new tool had
been written from scratch. This tool, however, reliably resets all three boards
and provides a clean basis for further initializing of the system.

The host tool itself is written by use of the Borland C compiler entirely in
plain C. It features commands as described below. These commands exactly
resemble the possibilities built into the kernel running on the DSP as the
host tool mainly has to show the features and enable the user to explore the
capabilities of the system. To integrate the system into PEPSY, more tools
and scripts have to be written to automatically control the kernels running
on each DSP.

This tool is a command line tool, able to show and use all of the facilities
implemented into the mini kernel to extend the system to the desired level of
abilities. Several arguments are parsed by the tool. The template, as can be
seen in fig. 4.6, shows the commands described in detail in chap. 4.4 (p. 45).

Below a description of each command presently implemented in the host
tool is given with an explanation of the syntax.

INIT reliably initializes both the DSP board and the connected ADAC
board. Although this is also issued by the host, it does not send com-

mands to any of the DSPs, as it only writes into registers accessible via
the ISA bus.

REQUEST STATUS issues command 0x00000000, displaying the re-
turned information on screen.

DOWNLOAD TASK issues commands 0x00000001 and 0x00000002,
downloading a piece of code or data, read from filename.out into
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Usage: host <command>
command one of the following commands:

INIT
REQUEST_STATUS
DOWNLOAD_TASK <filename.out>
START_TASK <start addr> <stack pointer> <time interval>
STOP_TASK
SET_MODE <time interval>
READ_BLOCK <start addr> <length> <filename>

filename.out: COFF file of task to be reloaded
start addr: entry address for task to start;
start of block to upload
stack pointer: address of stack
time interval: max. time (in ticks) task is allowed to
execute, 125 ticks == 10 us == 100 kHz
length: number of words to read from DSP RAM
filename: name of file to save block (if none, view
block on screen)

Figure 4.6: Argument template of host tool

DSP RAM. If the destination space conflicts with kernel positions in
the DSP RAM, download will be denied.

START TASK issues command 0x00000003, starting a task downloaded
before from address start addr. It can be started once (if the kernel
is used as a part of an executive loop) or continuously (for the kernel
running standalone). It is also necessary to set the appropriate stack
via stack pointer to the same position as denoted in the command
file for the task to ensure correct execution. If time interval is a value
in microseconds, this value initializes and starts the internal watchdog
to fire after that time to kill the task if it has not returned before. If
this value is set to 0, the watchdog will be switched off.

STOP TASK issues command 0x00000004, stopping a task from execu-
tion. As the memory allocation is handled offline, the task is effectively
killed by this command as no internal provision for preserving the code
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space will be taken.

SET MODE issues command 0x00000005, setting several mode flags as
described in chap. 4.2.7 (p. 41). The parameter time interval has
the same functionality as with starting a task.

READ BLOCK issues command 0x00000006, reading in length words
from DSP memory, starting at start addr and displaying them on the
screen or writing them into the file, if the optional argument filename
has been given.

4.5 Expansion to PEPSY

The expansion to the existing prototyping system basically consists of re-
stricting PEPSYs buffer management to static allocations and introducing
the execution of the kernel at the end of the executive. This enables the
system to have access to all buffers for reading them out or overloading them
with new values as well as executing new tasks if time remains at the end
of the execution cycle. The task flow and execution order of the new model
can be seen in fig. 4.7 and fig. 4.8 (p. 48) respectively.

These figures basically provide the same information as in figs. 3.2 and 3.3
(p. 22). The difference is the addition of the execution of the kernel K at the
end of the executive just before it loops. There has to be provision in the
executive for the kernel, i.e. the kernel has to be called. That can be as
simple as a function call as the kernel in task-mode behaves exactly like an
application task so no changes to the structure of the executive are necessary.
As can be seen in these figures, the kernel is called and then calls itself the
newly added task Tx. This task can, since the buffers are allocated statically,
use any of the previously allocated buffers. Additionally it can read and write
own buffers.

With the facilities provided by the kernel it is even possible to change the
executive loop itself to a new one and to introduce tasks in a more permanent
way once they have been tested and approved. Tasks entitled for permanent
execution can be introduced into the system in three steps:

1. calculating new schedule including new task

2. downloading code of new task into DSP memory
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3. download new executive code and branch to new entry point

Tasks entitled for permanent execution have to fulfil several requirements as
described in [BELP96, pp. 401, 405, 406]. They describe how to prove that
a new schedule (calculated offline, as has to be done first with the utilities
provided here) is still valid. The schedule can be found by first constructing a
single-processor schedule for one iteration of the graph (using the optimizer
developed in [Sch98]). A valid multi-processor schedule can then also be
found. The liveness of this schedule (i.e. a loop within the flow graph)
depends only on the consumption- and production-behavior of the tasks,
but it has to be considered that the cyclo-static specification does not allow
for any overlap between subsequent invocations of the same task. With
these restrictions and mathematical framework as provided by [BELP96],
new schedules can be approved and a new executive built thereupon. Once a
new schedule has been found and approved the necessary additional code of
the new task has to be downloaded into the DSP memory. A new executive
built after the newly calculated schedule is also necessary and has to be
downloaded, too. To switch the system to the new state, the host issues a
START_TASK command to the DSP pointing it to the entry point of the new
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executive.

The limitations to the new model are of course, that the new execution
time still has to fit into the (old) existing (and already running) schedule and
enough memory has to be available. These requirements could be enforced
by developing a completely new schedule with the tools developed by the
partitioning tool developed at the institute [MiicO1|, but it remains to be
seen if that reconfiguration of the system can be done fast enough in order
not to influence proper execution of the system already in operation.

4.6 Writing New Tasks

4.6.1 Development

Writing new tasks is always a tedious job as newly written software never
works on first attempt. Hence, rapid prototyping with fast turn around times
is required to enable programmers to finish their jobs within deadlines. This
thesis furthers the attempts already made at the institute to implement such
a system on a multi-DSP board.

While the kernel developed here has been debugged with Code Com-
poser’s facilities for online supervising of DSPs and their codes, the same
principle cannot be applied in such a straightforward manner for developing
tasks, as that would throw off the kernel from the DSP.

Several provisions have to be made to ensure continued availability of
the kernel running on the DSPs depending on the environment used for
developing new tasks: Code Composer or the shell tools as provided by
TI. If Code Composer is used for development of tasks, it must under no
circumstances be connected to a DSP with a kernel running on it. The other
possibility would be to use the provided make . bat? shell script to compile the
task sources from within the shell environment, as has been done extensively
while developing the core and accompanying test tasks.

In the case of Code Composer used for development of new tasks, testing
of the new task has to be performed offline on an additional system (or
at least a DSP not actually used by a running system) or within certain
restrictions as depicted above on the target-system itself (which would have
the advantages of yielding real timing). The kernel itself has been developed

9Small adjustments have to be made to the script depending on whether the sources
are in assembler or C.
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with Code Composer as this provides extensive debugging features, but tasks
have either to be written offline, for they would interfere with Code Composer
once it is connected to the target, or they have to be written in an external
editor and compiled by the provided make.bat script in their own directory.

It is stated by |[DLP97|, that 30% of time and resources is used by nodes
which are not processing data, but merely moving them. In order to reduce
this waste of resources, restructuring of the nodes and their functions has
been considered. Although this is more a design process than an implemen-
tational issue for the kernel itself, it is interesting to see, that improvements
in cost and speed very much depend on the topology of the system (as shown
by [DLP97]) and the mapping choices available. Furthermore these choices
interact very much with other synthesis choices in a nontrivial way. Neverthe-
less for simplicity issues a tree structure has been chosen for connecting the
DSPs as this topology is general enough since only up to five communication
ports are available at each node, if C40s are employed.

While developing new tasks, one has to keep in mind that a system is
already running on the target hardware and therefore a deadline is given.
On the other hand that schedule is known, therefore the latest termination
point is also known and the new task can be developed accordingly as it has
to fit in this schedule to execute properly.

The kernel itself is fully relocatable and so no restrictions on its placement
in DSP RAM if linked against a new command file are present. On has to
keep in mind, however, that fast execution is only guaranteed for the kernel
situated in on-board RAM. By using the precompiled kernel that property
will be ensured.. Furthermore the kernel is written in a way, that no restric-
tions on use of registers in tasks are imposed, as relevant values are all stored
in RAM adjacent to kernel code (if mapped correctly in command file) and
therefore shielded by the kernel’s memory protection.

Still several restrictions have to be kept in mind while writing new tasks.
These will be described in the following section.

4.6.2 Restrictions

It would of course be preferable if one could implement a supervising kernel
not imposing any restrictions whatsoever on the tasks to be run. This, how-
ever, is not possible if the hardware does not provide for such supervising
functions other than via alternative access and command modes (JTAG in
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the case of a C40). The kernel developed in this thesis runs on the DSP itself
and is not meant as a replacement for the online debugger as implemented in
the Code Composer. Therefore it cannot prevent all possible problems and
two main restrictions have to be imposed on tasks: no (or almost no) use of
timer 0 and strict avoidance of use of memory space already allocated by the
kernel.

The kernel itself has to stay small to fulfil requirements for small footprint
and low overhead and therefore cannot itself check the validity of the newly
downloaded tasks. All it can and will do is check for over-extended execution
times of a task and kill it if needed, or at least delay it for later execution.
This leads to the problem that this timer is already used for administrative
purposes and therefore it cannot be used by applications anymore. As there
is no arbitration scheme implemented on processor level, developers have to
take care either not to use this timer at all or to switch off that watchdog
function in the kernel.!® Major problems arise if the watchdog function is
not switched off and the timer still used within the application, as internal
registers would be negatively affected and necessary function vectors would
not point to their intended target anymore.

A more severe restriction is the avoidance of memory space already used
by the kernel. Again, no arbitration scheme is implemented on processor level
(as store commands would have to be supervised). Therefore the developer
has to consult the command file for the kernel before compiling the task
to ensure that no part of the task uses these memory spaces. This is also
true for the stack pointer or system variables. Furthermore the vector table
position is also predefined if the watchdog as described above is used. Lower
priority interrupts could be used by the task nevertheless as long as the timer
0 interrupt is preserved. This, however, has to be done either by determining
the actual position of the interrupt vector table as used by the kernel (not
recommended because it would lead to memory accesses in kernel space), or
by redefining the interrupt vector table at another position and redefining
the interrupt vector table pointer (IVTP in the case of C40s). In the data
flow model, however, no interrupts are necessary as the program flow is only
dependent on presence or absence of data.

Overall, the restrictions imposed on tasks are not that severe, especially if
a data-flow model is used as these models do not require application of timers
or interrupts. Even for data reading or writing, no timers or interrupts

10See chaps. 4.2.7 (p. 41) and 4.2.1 (p. 34) for further information.
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have to be initialized as the DSPs are stalled if the input FIFOs on the
communication ports are empty or the output FIFOs full.



Chapter 5

Experimental Evaluation and
Results

5.1 Performance

It is one of the major objectives of this thesis to implement a technique
for reloading code onto running systems with as little additional overhead
as possible. Ideally, the overall system behavior should not be influenced.
Therefore the test if new commands coming from the host are to be served
has to be very tight. This is achieved by the small inner loop as shown in
fig. 5.1 (p.54). This loop adds only very few code words to the code to be
executed. As a system should not already be running at the limits of its
capabilities to avoid excessive transient failures, a few extra cycles can be
added to the code. In the case of necessary reloading, however, the extra
cycles to download batches of code into the DSP RAM have to be available
anyway in order to make the system work at all, therefore the aforementioned
extra cycles will not matter.

While running without any reloading activity present, the overhead is
minimal as can be seen in the code extract in fig. 5.1 (p. 54). This is the
main loop that will call the task to be run in a very tight loop, or, if running
as part of a larger system, calls the task only once and returns control to the
calling environment. Although there is additional code necessary to decide on
the different run-time modes and intended behavior, that has been omitted
from the listing for clarity reasons. This code chunk shows the important
parts of the inner loop where tests on presence of words from the host are
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LOQOP:
LDI *+AR0(0) ,R1 ; test if word is present on input
LSH -9,R1 ; bits 9-12 contain # of words

; bits 13-31 read as zero
BNZ CTRLENV ; call CTRLENV if words present
CALL TASK ; call TASK if no words
BR LOOP ; loop back

Figure 5.1: Code sequence for test on presence of commands from host

performed, followed by a conditional jump to either the control environment
to handle the requests or to execute the task.

In this figure, CTRLENV is the entrypoint for the control environment that
communicates with the host (or the DSP connected to the upstream port)
if there has been data present on the respective upstream communication
port and is able to execute the commands described in chap. 4.2 (p. 32),
whereas TASK points to the entry location of the task to be executed.! This
entry point needs not necessarily point to a new task, it can also be the
entry point of a new executive loop if it has been downloaded before. This
provides for the possibility to adapt dynamically to changing environments
or permanently incorporate downloaded tasks into a new schedule. In that
way the kernel would then be free for another new task to be tested under
its control.

A very important point in using this kernel is performance as the system in
question is a real-time multi-DSP system. Therefore profiling has been used
while implementing and it successfully showed that the overhead for tests on
commands present from host is very minimal. Also transferring code between
host and DSP is limited in its time usage as only packets with a length of 16
words are transferred in each cycle. The impact of these few operations on
overall behavior is minimal and it can be said that the implementation of the
kernel has successfully shown the possibility of implementing quasi-dynamic
data-flow into an already existing environment.

Tt would of course be possible to download one word at precisely the location, where
the task is called and therefore modify the kernel to jump to another task, were it not for
the basic memory protection that the kernel would not allow any download address and
range reaching into its own memory locations. Instead a command is implemented for this
reason.
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It has been tested that at full speed of the ADAC board, which works at a
maximum of 100 KSps, full operation of the kernel can still be ensured, while
a task is executing. In units of the parameter passed to the START_TASK or the
SET_MODE command,? a task can only complete in all cases if it will be allotted
a minimum of 73 units. This means that the kernel uses 125 — 73 = 52 units
or % =4.16 ps. This conforms with observations made on the oscilloscope
screen where a delay of roughly 5 us has been shown.

As an estimation it can be said, that each word transferred will need
0.25 ps in a worst case scenario including overhead. That duration amounts
to a maximum data rate of 4Mwords per second or 8MBps and is well un-
der the maximum throughput of 20MBps (equals 5 Mwords each 32 bit per
second) the DSPs are capable of. As only packets to 16 words each are
transferred, the delay decreases with increasing packet length. But on the
other hand, communications will take too long and tasks limited to too little
processor time. So it has been found that 16 words not only fit nicely to fill
the FIFO queues on both the sending and the receiving side, but also serve
as a good trade-off between transfer speed and packet overhead in the time
domain.

It would be possible to list individual delays for different packet sizes
and FIFO queue availability. The packet length has been chosen in a way
that influences due to interference of packet size and queue depth are ruled
out, however. This ensures constant delays and provides predictability which
otherwise could not be ensured due to variable delay lengths. In that the
delay that is imposed on to the system is of constant length and only occurs if
data transmission from or to the host takes place. This behavior of constant
delay has been chosen to enable simplified incorporation of the kernel into
PEPSY since offline schedulability remains possible. In the case of dynamic
delays this offline schedulability would only be possible in either assuming
constant worst case delay or being able to decide beforehand on the contents
of the packet to be transmitted. The latter is not possible and the earlier
results in the same system structure as fixed delay. Therefore the approach
of fixed delays has been chosen.

2As the DSP is clocked by a 50 MHz oscillator, the internal clock frequency is 25 MHz
in the case of TI DSPs. This frequency is again divided by two to yield a clock of 12.5 MHz
for the timer counters. As the unit passed to the commands is connected directly to the
clock frequency of the internal timers, this relates on the used hardware to a value of 125
for a 100 kHz looping frequency. This equals a value of 12.5 units per us, but only integer
values can be passed to the command.



CHAPTER 5. EXPERIMENTAL EVALUATION AND RESULTS 96

5.2 Scalability

Scalability is a very important topic in developing multi-processor and multi-
node systems. Overall requirements are rising by time and so it must be
necessary to be able to upgrade the system without having to write new
code for all of it.> This can only be achieved reliably by separating each
node from the others. In this, influences from changes on one node to the
others are limited and upgrades can be introduced step by step. In only
applying small changes, the system behavior can be monitored more closely
and errors introduced are observed more immediately. That serves for more
ease in system maintenance and bug hunting.

Since the kernel developed in this thesis is completely transparent to the
outside world (i.e. beyond the boundaries of one node), it does not matter on
how many nodes in a multi-processor environment it is running. There is no
interference between the structures on one node and on another one. Only the
buffers transmitted over the communication ports are a connection, but they
are handled by the tasks themselves so they do not constitute a change in the
overall system behavior. Hence, scalability is not limited by the extensions
made to the existing task and data-flow model.

Nothing can be said on the topic of overall overhead, however, as this
depends on the tasks implemented and the intended use of the system. It
very much depends on the application itself, whether processing power really
increases by applying more nodes, as the administrative overhead in the
system will rise as well.

5.3 Fault Tolerance

Fault tolerance by itself is a means to increase system stability and availabil-
ity. It is implemented here to provide for fault free (though not necessarily
error free) execution of code on DSPs while making possible to transfer data
between different entities in the system. In this the implementation has suc-
ceeded as it is now possible to apply the already existing tools with added
functionality.

Communication on a level besides task interaction takes place on the
same hardware level, but is logically separated, so neither interaction nor

30n the other hand this also introduces problems with data and code integrity as
pointed out by [Agl99, p. 94], but this shall not be an issue here.
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interference is possible. As the kernels on different DSPs do not necessarily
need each other, they can (but do not need to) communicate if there is more
than one. However, this communication is only a passing along of commands
issued by the host, and if the target DSP or DSP along the path to the target
DSP are or become unavailable, no timeout mechanism has been implemented
to prevent deadlock of this situation. The advantage of this separation is that
there is no need to backtrack the complete system once an error has occurred
in one node while communicating with the host.*

For further tolerance against such faults, this timeout would be necessary
to signal the host that hardware does not react as expected and the host
can (and should) redistribute the tasks according to the new tree. This
functionality has not been implemented in this thesis, however, but that is a
matter of recompiling the host sources, as all computing intensive parts like
constructing a news schedule shall be kept away from the DSPs.

Tt has to be noted that fault tolerant behavior possibly implemented in the applica-
tion system is not part of the kernel and its communications and is therefore completely
independent.



Chapter 6

Discussion

6.1 Conclusion

It has been shown in this thesis, that, backed by theoretical aspects, a small
kernel running on a DSP can be implemented in order to introduce quasi-
dynamic data-flow into an already existing system without changing its over-
all behavior. Furthermore multi-DSP capabilities have been implemented to
make the system more versatile. It could also be shown that it is possible
to implement this kernel in a way to stay compatible to the existing rapid
prototyping system PEPSY and in the same time provide additional im-
portant functionality like task reconfiguration and basic memory protection,
while still maintaining offline scheduling and even increasing security and
availability of the running system. This kernel not only offers implementa-
tion examples of theoretical aspects, but also shows the separability of task
inter-communication and kernel communication between DSPs and a host
computer.

Theoretical research has shown that there are several data-flow models
in existence, none of them providing for the flexibility needed and eventually
implemented here. All of them are either too restrictive or too extensive to
fit the needs. A new model, quasi-dynamic data-flow, has therefore been in-
troduced in order to circumvent the restrictions imposed by existing systems.
This model is especially suited for applications where data-flow is not known
in all extent at compile-time, but offline scheduling still has to be possible.
It resembles SDF in a way, that data-flow is rather restricted in its way and
amount through the system while it being the timing defining parameter,
but on the other hand provides the additional functionality for the extended

o8
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feature set. It expands SDF’s definition by introducing dynamic elements
into the data-flow model, but does not go as far as a completely dynamic
model, where offline scheduling is not a possibility anymore.

Several rapid prototyping systems have been reviewed and their usability
tested against the requirements posed by the system design. The extensions
to the existing system have been implemented to stay compatible to PEPSY,
the institute’s system. Despite the functional extensions, the overall timing
of the system does not change if restrictions imposed by the data-flow model
and implementational details have been kept in mind. Furthermore there is
no interference with other additional tools added to PEPSY, as the kernel
can be switched in fully transparent mode and acts as a task afterwards.

In addition to that, fault tolerant principles have been applied to in-
crease availability and stability of the system. These methods have not been
extensively exhausted but instead used on a problem specific basis in accor-
dance with the need of the system, as it is never necessary and often too
expensive in the time, effort and money domains to implement all features
possible. Especially while implementing under tight timing constraints, only
basic important functionality is implementable as more computing intense
tasks would need too much time to complete. Therefore application of these
methods has been limited in this thesis and hand optimized assembler code
with few powerful features used instead.

While implementing the system, performance and a small footprint has
always been an issue. Both has been achieved by the kernel, while in the
same time allowing for a fair number of powerful commands. Features not
needed on the kernel have been moved to the host tools, again to keep the
kernel small and fast. The performance numbers have shown only a small
increase in overhead due to administrative code and communication port
handling. The overall performance can be said to be sufficient if for example
audio applications are to be implemented. Even high-end audio with sample
rates of up to 96 kHz is not a problem for the kernel as could be seen in the
timing results. Of course the complexity of the tasks running on the kernel
have to be indirectly proportional to the amount of data to be processed in
a given time unit.
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6.2 Further work

Several features have not been implemented as this thesis shall provide the
theoretical background and basic functionality implemented to show the prin-
ciples of operation of code reloading facilities. Therefore it has to be men-
tioned that not all functionality can be exploited by use of the current host
tool. Adding additional features, already implemented in the (more impor-
tant) kernel, is only a matter of recompiling the host sources, however, and
do not pose any basic implementational problems anymore.

Further work would include optimizing of the kernel sources to fully utilize
the DSP’s parallel processing capabilities as well as incorporation of the
kernel and the host tool into PEPSY providing for easy development and a
consistent system available at the institute. As the host tool has basically
been programmed to show the capabilities of the kernel it is intended more
for educational purposes than for development processes. Integration into
PEPSY will render this host tool superfluous and a common development
environment will exist once this integration has happened.
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Appendix A

Acronyms
ATM  Asynchronous Transfer Mode
CSDF  Cyclo-static Data-flow
DDF Dynamic Data-flow
DSP Digital Signal Processor
FIFO First-In First-Out buffer
FPGA Field Programmable Gate Array
FR Frame Relay
Grape-II  Graphical Rapid Prototyping Environment
OS Operating System
PEPSY Prototyping Environment for multi-DSP Systems
RAID Redundant Array of Inexpensive Disks
RTOS Real-time Operating System
SDF Synchronous Data-flow
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Terms

Data-flow graphs are used to visualize the order of events an algorithm
has to trigger to execute properly. These graphs describe the flow
of data in the course of programs execution. A program, therefore,
is represented as a directed graph, where the vertices correspond to
application tasks and the edges indicate data dependencies between
these tasks. Basically, data transfer can be buffered (and so pro-
vide for un-synchronisation possibilities) or unbuffered (which means
that sender and receiver have to be tightly synchronized not to lose
data). [LEAP95, BELP96|

Homogenous (single-rate) data-flow as the simplest model of data-flow
methods behaves like a FIFO of unlimited length. As soon as data
is present at each data input, the vertex (task) may be executed and
can fire output data. The fire rule is implicit in this model as it does
not have to be specified by the programmer. This model makes the
execution intervals of vertices depending on the frequency of data in
the way that all data arrives at the vertex with the same frequency
and so the vertex fires with the same frequency at its output as it
will be called exactly once if here is at least one data token at all its
inputs. [LEAP95, BELP96, Bha99|

Synchronous (multi-rate) data-flow denotes the property of vertices to
only fire if all required data is present. Vertices are to wait for its input
and cannot become active without sufficient data. Almost all imple-
mentations are synchronous as there is no point in wasting resources by
executing code without sufficient data. Exceptions are situations where
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it is simpler to implement or yields better stability in the time domain
by executing exactly the same commands in each loop. This model, in
contrast to single-rate data-flow, can handle incoming data at different
frequencies as it will pull different amounts of data tokens from each

input for each of its executions. The data output frequency can again
be different from the input frequencies. [LEAP95, BELP96, Bha99]

Cyclo-static data-flow expands the possibilities of synchronous data-flow
even more as it can describe situations where it will be necessary to
alternately serve different outputs at different frequencies, while the
single-rate and multi-rate models can only operate at a single output,
or at multiple outputs with the same frequency of data on each of

them. A possible application for this model would be a de-multiplexer
unit. [LEAP95, BELP96, Bha99|

Dynamic data-flow comprises the most general model in which consump-
tion and production is unknown at compile time and therefore needs a
run-time scheduling mechanism. Thus, a large run-time overhead is re-
quired. Many problems, however, can be implemented more efficiently
as their behaviour is more determinable and the universality can be re-
stricted to special cases which in turn will be executable under simpler
data-flow models. Dynamic data-flow is powerful, but better avoided
in tight real-time applications due to its unpredictability. Hence, a
lot of extensions to the synchronous data-flow model have been pro-
posed. |[BELP96, Bha99|

Grape-II is a system-level prototyping environment for developing DSP ap-
plications with general-purpose reusable hardware. It automates the
prototyping methodology by offering tools for resource estimation, par-
titioning, assignment, routing, scheduling, code generation, and param-
eter modification at run-time.! Grape- II consists of a set of tools which
interact with two central databases, one containing application specific
data, the other describing the features of the target systems. The envi-
ronment can handle mixed (DSPs and FPGAs) as well as homogenous
architectures. One large advantage of this system is the ability for the

developer to use an optimised code generator to enable register usage
across task boundaries. [LEAP95|

LGrape-II uses a heuristic branch-and-bound algorithm.
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PEPSY represents an environment to automatically build multi-processor
solutions for real-time applications. At the core of PEPSY is an opti-
miser, which is distributing the discrete functions (tasks) of an applica-
tion onto a parallel multi-DSP system in an optimal way.? The result
will be used by a code generator to gain C code for calling the given
functions. For the exchange of data files between the components of
PEPSY, special XML formats are used. [RRS00]

SynDEx as another rapid software prototyping tool distributes and sched-
ules the data-flow graph on a multicomponent hyper graph while satis-
fying real-time constraints. The distribution and scheduling are calcu-
lated offline for static execution sets. SynDEx generates an intermedi-
ate macro code, which is a direct translation of the obtained abstract
distribution and schedule. Finally, a macro processor generates the
appropriated executive for the target architecture.

Code Composer from Texas Instruments is an integrated development en-
vironment featuring not only a compiler but also debugger facilities
as well as online supervising and maintenance facilities on a very low
level. It is possible to watch and change certain CPU registers and
memory locations. Code Composer also provides the programmer with
multi DSP capabilities to develop code for several connected DSPs all
at once and have them running and supervised all at the same time.

2PEPSY applies simulated annealing to solve the mapping problem.



Appendix C

Kernel Code Listing

The latest kernel sources can be found at:
http://www.rockus.at/gerler/mastersthesis/
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